第145章 新的难题

针对电子设备之间的电磁耦合问题,团队重新规划了设备布局,通过精确的电磁场模拟计算,将容易产生相互干扰的设备进行了合理的空间隔离,并且优化了它们之间的连接线路走向,尽量减少线路之间的电磁耦合效应。

例如,将信号发射装置与一些高功率的电磁设备拉开了足够的距离,避免电磁场的直接相互影响。

此外,为了进一步增强信号的稳定性和抗干扰能力,他们还引入了先进的自适应信号过滤技术。

这种技术能够实时监测通讯信号中的干扰成分,并自动调整过滤参数,精准地滤除各种杂波和异常信号,就像给通讯信号穿上了一层智能的“防护服”。

在新方案制定完成后,专家们又进行了详细的理论可行性分析,通过建立复杂的电磁模型,模拟在各种极端电磁环境下新方案的表现。

经过多次模拟计算,结果显示新方案在抑制干扰、保障信号稳定传输方面有着显着的提升效果,但同时也预估到在实际应用中可能会面临新的电磁兼容性问题以及增加的设备重量对直升机整体性能的影响等挑战。

为此,团队针对这些潜在风险制定了相应的应对预案,如增加电磁兼容性测试环节、优化设备结构减轻重量等措施,力求新方案能够顺利实施并达到预期目标。

根据对发动机散热系统问题的深入分析结果,项目组迅速着手实施优化方案,力求彻底解决散热难题。

对于散热鳍片材质在高温下热性能下降的问题,采购部门积极与多家材料供应商联系,经过多轮筛选和性能测试,最终选定了一种新型的耐高温合金材料用于制造散热鳍片。

这种材料不仅在高温下能够保持稳定的导热系数,而且具有更好的抗氧化性能,能够有效延长散热鳍片的使用寿命。

技术人员们严格把控散热鳍片的制造工艺,确保每一片散热鳍片都符合高精度的质量要求,然后小心翼翼地将它们安装到发动机的相应位置上。

针对智能温控调节装置控制逻辑不够精准的情况,项目组与厂家紧密合作,由厂家的专业技术团队对装置的软件进行了升级优化。

升级后的软件能够根据发动机实时温度变化,以更快的响应速度、更精准的调节策略来控制散热系统的运行,确保发动机始终处于最佳的温度区间。

在软件升级完成后,技术人员进行了多次模拟测试,不断调整参数,使其与发动机的实际工况完美匹配。

而对于发动机内部热流分布复杂、存在散热“盲区”的问题,散热系统设计团队对原有的散热结构布局进行了重新调整。

他们在发动机热量聚集较为严重的区域增加了额外的散热通道,通过巧妙的管道设计,引导热流更均匀地散发出去,同时优化了散热鳍片的排列方式,使其能够更好地覆盖那些之前容易被忽视的“盲区”。